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IMAGE RESTOWIION WITH A LOCALLYVARIABLE WIENER FILTER*

M. J. Lahart
University of California

Los Alamos Scientific Laboratory
Los Alamos, New Mexico 87545

Abstract

The parametric wiener filter is often used to deblur images that are relatively noise-
free. If noise is more severe, the restored image may be obscured by a granular pattern
that results when the noise is subjected to tk,e deblurring filter. This effect may be re-
duced by using a larger noise parameter, but this leads to a restoration that is less sharp.
We describe hou the noise parameter may be varied from pixel to pixel, so that it is larger
only where noise is greater. Pixels with low signal-to-noise ratios are identified by a
thresholding process and by comparison with nearest neighbors. The effect~ of the estimated
Wiener spectra on the restored image are discussed.

IntrGd’’-cion

The application of small computers to image processing has made the development of local
processing techniques important. When memory is limited, techniques are preferred that pro-

‘ss small portions of images at a time so that an entire image might be processed in a
.:’rial manner. However, one of the most important tools in image restoration, that of

>patial filtering, is generally global in nature-- Fourier transforms of entire images must
be taken before filtering can be performed by multiplication in the frequency domain. If
images are divided into smaller subimages in an attempt to approach serial processing, the
influence of the edges of the segments becomes important. High-pass filtered Images exhibit
ripples extending away from the edges if high-frequency boosting is mild; if it is severe,
the entire filtered subimage may be obliterated by artifacts. When larger images are pro-
cessed, artifacts are less severe, but time consuming wlites to disk are necessary to inter-
change rows and columns.

Computations are performed in the Fourier domain, because the convolution matrix is
diagonal there. In the direct domain, the solution of the equation that describes convolu-
tion is often thought to require the i].tiersion of a matrix with an extremely large number
of elements, sometimes as large as the square of the number of pixels in the image. We will
show that images can be deconvolved in the direct domain with the inversion of a small
enough matrix so that computations can be performsd easily, The vaiue of each pixel in the
object is estimated separately, and only a few pixels in its neighborhood are used in the
estimation. Results appear the same as global restoration~ produced in the Fourier domain.

Besides facilitating computations, local filtering offers a flexibility that is not
attainable with global techniques, Filter parameters can be varied from pixel to pixel so
that spatially variant point spread functions or signal-to-noise ratios can be accommodated
in restoration algorithms. We will show by example how parameters can be varied to adjust
for a spatially variant signal-to-noise ratio. Our exsmple uses a binary filter in which
one of only two sets of filter parameters are used in the restoration of each pixel. The
technique can be extended to permit choices from much larger sets of parameters.

Examination of Global Techniques—

We will compare local and globcl restoration techniques by blurring a particular image,
adding Gaussian random noise to it when it is appropriate to add noise, and applying the
restoration elgorithm. For this purpose we will use an image that has been h.igh-Dass fil-
tered. The effects of the restoration procedure are easier to evaluate when ‘he. ‘ ~ge has
been enhanced in this way, because it acts primarily on fine detail. The low spat.al fre-
quency region often dominates th? appearance of imagery, and only by reducing its relat;vc
importance to the image can improvements in high-frequency detail be examined closely.
Also, local filtering techniques should, in theory, work better on images with small cor-
relation u-=’antes. Local techni ues ignore

2
information that is far from the area that is

restored; to iisregard this in in ormatlon is surely justified when distant re ions are un-
correlated. ;lxcluding distant regions may be justifiable more generally. !We ave compared
the results f:f locally restoring the original image with those obtained by restoring the
high-frequr,’cy portion and recombining it with the low-fraquency portion and found no dis-
cernible differences. Further investigation of this poss!ble equivalents is necessary
to reach reliable conclusions.

~-”’ ‘—
Work performed under the auspices of the US Department of Energy, Con,wact No. W/4U>-tNb-JU.
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Fig. 1. Image that will be blurred and re- Fig$ 2. Version of Fig. ~ thst Was b~urred
Stord. This has been high- with a 3 by 3 point sprei?d function.
frequency boosted.

F’igute 1 is a 12E by 128 xinaic! that has been subjected to a high-frequency buasting,
and Fig. 2 is a version of it that was blurred by a point spread function that approximated
a circle with a diameter of 3 pixels. We WL1l compute borh a g30ba3 fiiener fi~tcr restora-

●tion with a IOCG1 restoration of this blurred image. The Niener filter is represe~ted by

where #{f) is the Fo~rier transform of ‘.h point spread function, ~(f] i.s an estimate of
5the Wiener spectrum of the ob.!ect, and <n ~ is the noise pazvww?ter. Equation (1] is the

filter that, on the avera e, minimizes the squares of the differences between the estimated
and actual objects, th x e usual derivation of EQ. /1), the noise parameter is an assumed
noise ~ariance in the im$ge, but better restorations can be computed in practice by tTeat-
ing cn > as a free parameter. Usually a value of xnz~ that is smaller than the noise vari-
ance results in restorations vith shurper edges and enhanced detaik, but with more promi-
nent noise patter s.~ . These are often preferred when the noise pattern can tie recognized
as such. When <n > as a free parameter, ?q,
filter.”$

[1) has bee~ called the “parametric lf~ener

No noise was added to Fig. 2 after it tias blurred. If ‘the noise paran,eter is zero,
the fi~ter F(f] hus sin8ulnr points, and we must set <nz> equal to % smalI value to make
it possible to compute F(f). The result of filtering by this F(f) is Fig. 3. The Fourier
transform of F(fl, the point spread function of the restoration process, is Fig. 4. It
extends 3S to 20 pixels from its center, und pixels this fur away from the point being re-
stored influence its estimated vaiue.

The I.east squares
nearby image points

Local Fi=

restoration of an o:ject is a weighted sum of a finite number of

.!2)

whe~e the c.. are choven to minimize the expectation of the square of the difference be-

tween the e;;imated abd actuai abjec.t~ The quantity that iS minimized iS Ci2, Qiven by
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Fig. 3. Conventional Wiener filter restora - Fig, 4. Point spread function (Fourier
● tion of Fig. 2. transform of filter) used to compute

Fig. 3.

The derivative of ci2 with respect to each c. . is found and the c. . that minimize Ci 2 are

computed by sett~n m “ m
coefficients <o(~i!~~~?$~~fi~~v~ iq%$&=~~?~mage at different points and <i [1,) i(~.)~

These are fun~~ions of the correlation
1

between spatially Sepaiated values of the image. They are computed by solving the equation

x < i(;j)i(;k) > = < o(~i)i(~k) > .Cij
j .

(4)

The correlation coefficients can be expresseti in terms of the autocorrelation function A~~)
of the object, the point spread function s(~) of the imaging system, and the variance <n->
of the noise. The relations are

c i(lj)i(;k) > ■

f
S(i’-:j)s(i” - ~k)A(~’-~”) d?(’d;’+ <n2>6.]k

< O(ii]o(:k) > ●

f
A(:i- ;’)S(;’ - ;k)d~’ .

(5]

(6)

We note that the correlation coefficients of widely separated points are small if
A(:) and s(~) ure narrow. We will estimate objects in cases for which they are narrow
enough that pixels separated by more than 8 pixels have small correlation coefficients.
This should mean that pixels this far ●way from a point being restored need not be included
in the computations. We will solve Eq. (4) for one+particular value of the index “i,’’+and
use this to estimate O(ii) from the image values i(x) in a 17 by 17 region that has o(~i)
at it~ center. This region contains 289 pixels.

The solution of Eq. (4) for ● region containing 289 image points in general requires
the inversion of a 289 by 209 matrix. The size of this matrix can be reduced when the point

?
s read function is symmetric ●bout ita horizontal and vertical ●xes. When this is so, the
1 by 17 pixel region can be divided into zones such that the horizontal ●nd vertical dis-
tance of each point in a zone from the center of the region is the same. Figure 14 is a
diagram of the first few zones; the region is divided into square pixels that are labeled



such that pixels with the same number comprise a single zone. We estimate the value of the
center pixel labeled “i.”

AS a consequence of the horizontal and vertical symmetry of the point spread function,
the correlation coefficients between zones can be computed as a sum of correlation coeffi-
cients between individual pixels. For ●xample, the sum of the correlation coefficients
between a pixel in zone S and all pixels in zone 3 is the same for all pixels in zone 5.
This means that ?mbers of Eq. (4] ca~i be grouped to form a set of equat ions that describe
the relationships among zones. Fe use the coefficients to compute the estimated value of
zone 1, which consists only of the point that we estimate. There are 4S zones in our
17 by 17 region. The inversion of a 45 by 45 matrix can be performed quickly on many
computers.

Figure 5 is a local r~storation of Fig. 2 that was performed in the direct domain as
described above. It is sllghtly smaller than Fig. 3, because we made no attempt to restore
the 8 points that are closest to the ●dges. That it is practically indistinguishable from
Fig, 3 indicates that this local processing technique is a satisfactory alternative for the
global Fr;~rier domain method.

It JS of interest to compare the weights cij thut are used in Eq. (1) with the point

spread function that was used to produce Fig. 3. Figure 6 is a plot of the average weight
(weight per pixel) of each zone as a function of the distance of each zone from zone 1.
The plot has ❑any of the samefeatures as the point spread function, i.e., it has lobes at
roughly the same distances apart and the same size as the point spread. However, a number
of points are displaced from what might be a smooth curve. These differences are important.
If the weights of each zone are replaced by the values of the point spread function that
are appropriate for their distances from the center, the restoration that results is very
poor.

Correlation Function Selection
.

m ●stimate of the autocorrelation function A(i) of the object is used in the computa-
tions of the correlatiori coefficients of Eqs. (S) and (6). The direct-domain equation for
the object estimate is similar to Eq. (1] !.n the sense that this function is multiplied by
so~ethihg that is nearly the same as its inverse when the noise estimate is small. Also,
A(x) sppears in Eqs. (S) ang (6) under integrals whose values do nat depend significantly
on small fluctuations in A(x). For these reasons, good restorations can be computed for a
wide range of A(x).

Nevertheless, values of A(;) that are unreasonable can adversely affect the quality of
the restoration. When significant detail is present in the image, we have used the auto-
correlstion function ●stiiiate

. .
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Fig. S. Local restoration of
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Fig. 6. Avers ● weight of each zone as a
!funct on of the distance from

zone 1.
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A(~) - exp(- 2wlCll;l/128) if 1~1 < 6
(7)

“o if 1~1 > 6 ,

where 1~1 is a number of pixels. This ●xpu,.tntial autocorrelation function is typical of
images that $onsist. of pulses of random hei&ht and length, as might occur when many edges
are present. The half-width of this autocorrelation function corresponds to the expected
frequency content of the objects whose images have been high-pass filtered as described
above. Where there is relatively little detail, a broader autccorrelation is more appro-
priate. When the autocorrelation function AS too broad (or a constant) the matrix that must
be inverted to solve Eq. (4) is ill-conditioned, and noise in the image is severely ampli-
fret. An autocorrelation function of the form

A(;) - 1 .; Iii if I;I C 4

-o if Iii > 4 ,
(8)

is broader than the exponential function of Eq. (7), yet has not led to the problems asso-
ciated with ill-conditioning. We have found it useful for images with relatively little
detail. When significant detail is present, it does not lead to restorations that are as
sharp as those produced using Eq. (7).

Besides the restriction that the assumed autocorrelation function not be broad, there
hre some other limitations on its choice that we should note. If the function is not cir-
cularly symmetric, hori~ontal and vertical artifac s may appear,

$
This also occurs if the

function of Eq, (7] is not set equal to zero for I I > 6, even though it is small for larger
values of Ifl. Also, if the autocorrelntion function is very narrow, e.g., a delta func-
tion, the restoration has a g$anular appearance. Some empirical investigation may be neces-
sary to determine the best A(x) for a particular type of imagery.

Variable Imaging Parameters

Besides offering computational simplicity, local filtering ❑akes it possible to adjust
filter parameters to fit local variations in the characteristics of an image. These varia-
tions may arise from a spatially variant point spread function, from signal-dependent noise,
or from a nonhomogeneous object. We will demonstrate how the last of these may be treated
with an object autocorrelation function and a noise parameter that varies from pixel to
pixel. We wili restore with a binary filter. Wc will use the corr~lation function of
Eq. (7) and a noise parameter of 0.006 when the signal-to-noise ratio is above a given
threshold, and we will use the autocorrelation function of Eq. (8) and a fioise parameter of
0.024 when it is below the threshold. Restoration with a binary filter could be dcnc glob-
ally, by computing two restorations and choosing pixels from one or the other according to
the same thrt?shold criterion. However, the local technique is not only easier, but it could
be extended so that many more than two choices may be made. On a global scale, such an e?i-
tension is very difficult, if not completely unfeasible.

Figure 7 is an image blurred with a circular poii,. spread function with a diameter of
S pixels. Gaussian nose is added to the picture that has a variance equal to 0.2 times
the variance of the unblurred image. Figure 8 is a restoration which uses the high-signal
filter that is described above, and Fig. 9 is a restoration that uses the low-signal filter.
Figure 8 shows a granular effect that IS typical of Wiener-filter restorations; it occurs
because noise is ●mplified in the restoration process. This effect is not present in
Fig. 9, but the restoration is not us shar

Pigure lOis the result of a use of a [inary filter The square of each pixel of
Fig. 7 was computed and those whose values were less thin 0.75 of the variance of the
entire image were recomputed with the low-signal ~arameters. Fidure 11 shows in white those
pixels that were restored using the high-signal fzlter.

We note that ❑any of the pixels that do not look like the imagery in their surroundin~
re ion were restored as high-signal points while points nearby were restored as low-signal

fpo nts. Isolated points such as this have been identified as noise with good results. ~
Figure 12 was reduced from Fig.

R
10 by locating all points restored with the high-signal

parameters wit not more than on~ neighbor that was restored in this way ●nd recomputing
these pixels with the low-signal parameters. Figure 13 shuws in white the pixels thet were
processed with high-si nal parameters,

%
The i=age of Fig. 12 is practically as sharp as the

restoration of Fig. 8 ut lacks its granularity.

.,



Fi~, 7. Version of Fig. 1 that

.

was blurred
with a 5 by 5-point spread function
to which noise was added.

Fig. 9. Figure 7 restored with a filter
that is intended for images with
low signal-to-noise ratios.
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I
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Fig. 8. Figure 7 restored with a filter
that is intended for images with
high signal-to-noise ratios.

.-
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I.
Fig, lC. Figure 7 restored with a combina-

tion of the filters used to re-
store Figs. 8 and 9.

Conclusions

If an estimate of the object autocorrelation function is chosen properly, least
squares restoration can be performed in the direct domain with the same results as in the
Fou~ier domain. Such restoration is local in the sense that the restoration of each point
depends on the values of a few nearby points and not on distant ones. If the point spread
function is circuidrly symmetric, the autocorrelation function must be too. The autocor-
relation function must ●pproach ze?o smoothly, ●nd it ❑ust be a few pixels wide. The local
nature of this restoration proves to be advantageous because it permits adjustments to be
made to fit spatially variant ima~ie conditions such as variant signal-to-noise ratios.
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10 that were Fig. 12. Figure 7 restored with a combina-
restored with the high signal-to-
noise filter are white. and those

tion of the high and low signal-
to-noise filters. In this restora-
tion;,, isolated pixels with high
values were identified as noise.

restored with the low signal-to-
noise filter are black.
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Fig. 13. Those pixels of Fig. 12 that were FiE, .]4. Zone dia~ram. Pixels labeled w].th
restored with the fiigh signal-to-
noise filter are white ●nd the

-,
the same-number comprise a single
zone.

others are black.
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